quinta-feira, 15 de julho de 2010

Sincronização no Caos


Olá leitor!

Segue abaixo uma notícia publicada hoje (15/07) no site da “Agência FAPESP” destacando que um estudo de cientistas brasileiros que será publicado no periódico “Physical Review Letters” demonstra dualidade da sincronização de amplitude-fase em sistemas caóticos.

Duda Falcão

Especiais


Sincronização no Caos


Por Fábio Reynol

15/07/2010


Cientistas brasileiros demonstram dualidade da sincronização de

amplitude-fase em sistemas caóticos. Estudo, publicado na Physical

Review Letters, tem implicações em áreas diversas como espaço,

meteorologia, fisiologia respiratória e mercado de capitais (NASA)


Agência FAPESP – Estudos sobre manchas solares, fisiologia respiratória, operações financeiras, meteorologia e outras áreas tão diversas como essas poderão se beneficiar de uma pesquisa publicada no periódico Physical Review Letters.

O trabalho foi feito por cientistas do Instituto Nacional de Pesquisas Espaciais (INPE) e do Instituto Tecnológico de Aeronáutica (ITA), em São José dos Campos (SP), em cooperação com colegas das universidades japonesas de Kyoto e de Hokkaido.

Por meio de simulações numéricas, o grupo analisou a intermitência espaço-temporal, um fenômeno encontrado em fluidos, plasmas, óptica, reações químicas e biomedicina.

A demonstração da dualidade da sincronização de amplitude-fase feita pelo grupo pode ser aplicada em ciclos solares, variabilidades climáticas, plasmas de fusão termonuclear controlada, ritmos cardíacos e respiratórios, sinais sísmicos e frentes de ionização no Universo, entre outros exemplos.

A intermitência é caracterizada por uma série temporal que exibe períodos laminares que, por sua vez, são intercalados por surtos de flutuações de grandes amplitudes. Já na chamada intermitência espaço-temporal, o sistema apresenta um comportamento caótico no tempo e também no espaço.

O grupo foi liderado pelo físico espacial Abraham Chian, do INPE, e investigou o mecanismo físico da intermitência do tipo on-off na transição do caos temporal para o caos espaço-temporal, com base na simulação numérica de um modelo não-linear de ondas longas. Esse modelo matemático pode ser utilizado para descrever fenômenos como a evolução da onda de deriva em plasmas ou de um tsunami em um oceano.

“O avanço significativo é a demonstração da dualidade da sincronização de amplitude-fase das flutuações, o que pode ser aplicado em muitos problemas de sistemas complexos como, por exemplo, o funcionamento do coração ou flutuações da bolsa de valores”, disse Chian à Agência FAPESP.

O trabalho contou com o apoio da FAPESP por meio de um Auxílio à Pesquisa – Regular coordenado por Erico Rempel, professor do ITA, e de Bolsa de Pós-Doutorado para Rodrigo Miranda, do ITA. Yoshitaka Saiki, das universidades de Kyoto e Hokkaido, esteve no Brasil em 2006 com apoio da FAPESP.

Os três também assinam o artigo publicado na edição de 25 de junho da Physical Review Letters. O grupo também teve a participação de Michio Yamada, professor da Universidade de Kyoto, conhecido por ter desenvolvido o modelo GOY (Gledzer-Ohkitani-Yamada) de turbulência em fluidos.

O estudo promoveu também avanços metodológicos. Os pesquisadores lançaram mão tanto da representação de Fourier como a de Lyapunov para calcular as entropias espectrais de potência e de fase, bem como as médias temporais dos espectros de potência e de fase.

Segundo Chian, a metodologia desenvolvida durante o trabalho poderá ser aplicada na resolução de uma grande variedade de problemas em sistemas físicos, biológicos, químicos e tecnológicos.

Problemas no ritmo cardíaco e crises nas bolsas de valores são exemplos de instabilidades nesses sistemas. “Quando essa instabilidade evolui para um sistema não linear, esse fenômeno caótico que analisamos aparece”, disse.

A pesquisa focou nesse ponto de transição entre o período de fluxo laminar e o turbulento. O fato de o estudo poder ser aplicado também na análise de imagens implica que poderá auxiliar estudos de manchas solares.

Chamadas de regiões solares ativas, essas manchas apresentam comportamento turbulento enquanto as regiões à sua volta atuam de maneira laminar. “Nosso trabalho poderá ajudar a entender a diferenciação das regiões solares ativas”, disse Chian.

Entender a transição de sistemas laminares para sistemas turbulentos pode ajudar também nas investigações sobre o clima, como a formação de fenômenos meteorológicos como furacões e tornados.

A investigação atual está relacionada a outro trabalho publicado anteriormente também na Physical Review Letters.

Na época, o grupo de Chian caracterizou uma nova estrutura chamada de “selas caóticas” que ajudam a prever o comportamento de um sistema caótico e a controlar caos e turbulência em sistemas complexos.

O nome foi inspirado nas selas de montaria devido a uma característica dessas estruturas: elas são estáveis em uma direção e apresentam instabilidade nas direções transversais a essa.

Prêmio Guggenheim

Chian foi um dos quatro brasileiros agraciados com a bolsa de 2010 da Fundação Memorial John Simon Guggenheim, dos Estados Unidos, que contemplou 180 pesquisadores, professores e artistas.

A premiação envolve uma bolsa de cerca de US$ 23 mil para ser utilizada em pesquisas na área de estudo do ganhador. Anunciado no início de junho, o prêmio de 2010 contou com cerca de 3 mil inscrições.

Foram contemplados 37 latino-americanos e o Brasil teve quatro laureados: Patricia Torres Bozza (Instituto Oswaldo Cruz), na categoria biologia molecular e celular; João Ricardo Mendes de Oliveira (Universidade Federal de Pernambuco), na categoria neurociência; Jorge Villavicencio Grossmann, violinista e compositor radicado nos Estados Unidos, na categoria composição musical; e Chian, escolhido na categoria ciência da Terra.

O artigo Amplitude-Phase Synchronization at the Onset of Permanent Spatiotemporal Chaos (doi: 10.1103/PhysRevLett.104.254102), de Abraham Chian, Rodrigo Miranda, Erico Rempel, Yoshitaka Saiki e Michio Yamada, pode ser lido por assinantes da Physical Review Letters em http://prl.aps.org/abstract/PRL/v104/i25/e254102.


Fonte: Site da Agência FAPESP

Nenhum comentário:

Postar um comentário